DGS Mutlak Değer Ders Notu

DGS Mutlak Değer Ders Notu

Bu ders notumuzda sizlere Mutlak Değer konusunun önemli yerlerini anlatacağız. Sayfamızda Mutlak Değer Ders Notu, Mutlak Değer Konu Özeti, Mutlak Değer Önemli Kısımları, Mutlak Değer Yazılı Kaynak vb. başlıkları bulabilirsiniz.

Not: Eğer konuya hakim değilseniz; öncelikle konu anlatımlı videoyu izlemenizi öneririz.
A:TANIM 

Bir reel sayının, sayı doğrusu üzerinde eşlendiği noktanın başlangıç noktasına olan uzaklığına sayının mutlak değeri denir.

Bir x reel sayısının mutlak değeri |x| biçiminde gösterilir.

 https://dgs.konu-anlatimi.gen.tr

NOT: Bütün x gerçel (reel) sayıları için, |x| ³ 0 dır.

 

B. MUTLAK DEĞERİN ÖZELİKLERİ

|x| = |–x| ve |a – b| = |b – a| dır.

  1.  
  2. |x × y| = |x| × |y|
  3. |xn| = |x|n
  4. y ¹ 0 olmak üzere,

https://dgs.konu-anlatimi.gen.tr

  1. |x| – |y| £ |x + y| £ |x| + |y|
  2. a ³ 0 ve x Πhttps://dgs.konu-anlatimi.gen.tr olmak üzere,

|x| = a ise, x = a veya x = –a dır.

  1. |x| = |y| ise, x = y veya x = –y dir.
  2. x değişken a ve b sabit birer reel (gerçel) sayı olmak üzere,

      |x – a| + |x – b|

ifadesinin en küçük değeri a £ x £ b koşuluna uygun bir x değeri için bulunan sonuçtur.

  1. x değişken a ve b sabit birer reel (gerçel) sayı ve

      K = |x – a| – |x – b|

olmak üzere,

x = a için K nin en küçük değeri, x = b için K nin en büyük değeri bulunur.

  1. a, pozitif sabit bir reel sayı olmak üzere,

a) |x| < a ise, –a < x < a dır.

b) |x| £ a ise, –a £ x £ a dır.

  1. a, pozitif sabit bir reel sayı olmak üzere,

a) |x| > a ise, x < –a veya x > a dır.

b) |x| ³ a ise, x £ –a veya x ³ a dır.

  • a < b ve c Πhttps://dgs.konu-anlatimi.gen.tr olmak üzere,

      |x + a| + |x + b| = c

eşitliğinin çözüm kümesini bulmak için 2 yöntem vardır.

 

1. YöntemMutlak değerlerin içlerinin kökleri bulunur.

x + a = 0 ise, x = –a dır.

x + b = 0 ise, x = –b dir.

Buna göre, üç durum vardır. (–b < –a olsun.)

–b £ x, –b < x £ –a ve x > –a dır. Bu üç durumda inceleme yapılır.

1. Durum–b £ x ise, –x – a – x – b = c olur. Bu denklemin kökü –b £ x koşulunu sağlıyorsa, verilen denklemin de köküdür.

2. Durum–b < x £ –a ise, –x – a + x + b = c olur.

Bu denklemin kökü –b < x £ –a koşulunu sağlıyorsa, verilen denklemin de köküdür.

3. Durumx > –a ise, x + a + x + b = c olur. Bu denkleminin kökü x > –a koşulunu sağlıyorsa, verilen denklemin de köküdür.

3 durumdan elde edilen köklerin oluşturacağı küme, verilen denklemin çözüm kümesidir.

2. Yöntem

a < b ve c Πhttps://dgs.konu-anlatimi.gen.tr olmak üzere,

      |x + a| + |x + b| = c … ()

eşitliğinin çözüm kümesinde aşağıdaki üç durum geçerlidir.

(x + a = 0 ise, x = –a) ve (x + b = 0 ise, x = –b)

  1. Sayı doğrusunda –b ile –a arasındaki uzaklık c ye eşit ise,

() daki denklemin çözüm kümesi,

      Ç = [–b, –a] dır.

  1. Sayı doğrusunda –b ile –a arasındaki uzaklık c den büyük ise,

() daki denklemin çözüm kümesi,

      Ç = Æ dir.

  1. Sayı doğrusunda –b ile –a arasındaki uzaklık c den küçük ise,

() daki denklemi sağlayan iki sayı vardır. Bu sayıları bulmak için, c den, sayı doğrusunda –b ile –a arasındaki uzaklık çıkarılır, farkın yarısı bulunur. Son bulunan değer D olsun. Buna göre, () daki denklemi sağlayan sayılardan biri –b – D diğeri –a + D dir. Bu durumda () daki denklemin çözüm kümesi,

      Ç {–b – D, –a + D} olur.

Bir Cevap Yazın

E-posta hesabınız yayımlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir