DGS Logaritma Ders Notu

DGS Logaritma Ders Notu

Bu ders notumuzda sizlere Logaritma konusunun önemli yerlerini anlatacağız. Sayfamızda Logaritma Ders Notu, Logaritma Konu Özeti, Logaritma Önemli Kısımları, Logaritma Yazılı Kaynak vb. başlıkları bulabilirsiniz.

Not: Eğer konuya hakim değilseniz; öncelikle konu anlatımlı videoyu izlemenizi öneririz.
LOGARİTMA

Bu konumuzda size logaritmayı anlatacağız. İyi Çalışmalar…

I. ÜSTEL FONKSİYONLAR VE LOGARİTMİK FONKSİYONLAR

2y = 24 eşitliğini sağlayan y değerini bulmak için yapılan işleme üslü denklemi çözme denir. (y = 4)

Buraya kadar anlatılan bilgiler 6a = 10 eşitliğini sağlayan a değerini bulmak için yeterli değildir. Bu eşitliği sağlayan a değerini bulmak için yapılan işleme logaritma alma denir.

A. ÜSTEL FONKSİYONLAR

http://dgs.konu-anlatimi.gen.tr  olmak üzere,

http://dgs.konu-anlatimi.gen.tr

biçiminde tanımlanan fonksiyona üstel fonksiyon adı verilir.

a > 0 olduğundan f(x) = ax > 0 olur.

B. LOGARİTMA FONKSİYONU

 http://dgs.konu-anlatimi.gen.trolmak üzere,

http://dgs.konu-anlatimi.gen.tr

biçiminde tanımlanan üstel fonksiyonun ters fonksiyonuna logaritma fonksiyonu denir.

http://dgs.konu-anlatimi.gen.tr

şeklinde gösterilir. Buna göre,

 http://dgs.konu-anlatimi.gen.trdir.

y = logax ifadesinde http://dgs.konu-anlatimi.gen.tr sayısına http://dgs.konu-anlatimi.gen.tr sayısının a tabanına göre logaritması denir ve ‘‘y eşittir a tabanına göre logaritma x ’’ şeklinde okunur.

C. LOGARİTMA FONKSİYONUNUN ÖZELLİKLERİ

Kural

1 den farklı her a pozitif reel sayısının a tabanına göre logaritması 1 dir. Buna göre,http://dgs.konu-anlatimi.gen.tr

Kural

Her tabana göre, 1 in logaritması 0 dır. Buna göre,

http://dgs.konu-anlatimi.gen.tr

Kural

http://dgs.konu-anlatimi.gen.tr

Kural

http://dgs.konu-anlatimi.gen.tr

Kural

http://dgs.konu-anlatimi.gen.tr

Kural

http://dgs.konu-anlatimi.gen.tr

D. ONLUK LOGARİTMA FONKSİYONU

f(x) = logax fonksiyonunda taban a = 10 alınırsa f(x) fonksiyonuna onluk logaritma fonksiyonu denir ve kısaca logx biçiminde gösterilir.

http://dgs.konu-anlatimi.gen.tr

1 den büyük sayıların on tabanına göre logaritması pozitiftir.

1 den küçük pozitif sayıların on tabanına göre logaritması negatiftir.

Kural

x > 1 olmak üzere, x in onluk logaritmasının tam kısmı, x in basamak sayısının bir eksiğine eşittir. 0 < y < 1 olmak üzere, y nin ondalık kesir biçiminde yazılışında, sıfırdan farklı ilk rakamın solundaki sıfır sayısı K ise, logy nin eşitinin tam kısmı –(K – 1) dir.

E. DOĞAL LOGARİTMA FONKSİYONU

f(x) = logax fonksiyonunda taban

ℓ = 2,718281828459045235360287471352… alınırsa (ℓ sayısı irrasyonel bir sayı olup yaklaşık değeri 2,718 kabul edilir.) doğal logaritma fonksiyonu elde edilir. Doğal logaritma fonksiyonu kısaca lnx biçiminde gösterilir. Bu durumda,

http://dgs.konu-anlatimi.gen.tr

İşlemlerde genellikle logex yerine lnx ifadesi kullanılır.

II. LOGARİTMALI DENKLEMLER

Özellik

a sayısı 1 sayısından farklı bir pozitif sayı olmak üzere, tabanı a olan logaritmalı denklem, logaf(x) = b ise f(x) = ab dir.

 logaf(x) = logag(x) ise f(x) = g(x) dir.

Logaritmalı denklemleri bu özellikleri kullanarak çözeriz.

Logaritmanın tanımından, f(x) > 0 ve g(x) > 0 olmalıdır.

III. LOGARİTMALI EŞİTSİZLİKLER

Kural

logaf(x) in işareti a ya bağlı olduğundan eşitsizlik çözümlerinde aşağıdaki bilgileri kullanırız. http://dgs.konu-anlatimi.gen.tr

Bir Cevap Yazın

E-posta hesabınız yayımlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir